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Abstract 1 
Sexually selected traits and the use of strategies to enhance male reproductive success 2 

(e.g., competition and dispersal) can yield sex differences in metabolic requirements, rates and 3 

durations of growth and maturation, and the propensity for risky behavior, which are suggested 4 

to result in age-specific sex differences in mortality and lifespan. We investigated age-specific 5 

sex ratios, mortality, and dispersal in Propithecus edwardsi in Ranomafana National Park, 6 

Madagascar. We predicted that, due to similarities in growth rates and body sizes, male and 7 

female juvenile mortality rates would be comparable; because both sexes disperse and have 8 

intense intersexual competition and aggression, adult mortality would be similar; and given 9 

similarities in dispersal frequency and distance, the timing of dispersal would not differ. We used 10 

80 group-years births, deaths, and dispersals (Nfemales=41, Nmales=34) collected over 23y to 11 

calculate sex ratios and survival curves. Females lived longer than males (maximum 32 and 19y, 12 

respectively). Sex ratios were male-biased from sexual maturity through 17y, and female-biased 13 

at birth and older ages. Infant survival probabilities were similar. Thus, differential development 14 

and maturation are unlikely explanations for longer female lifespan in this species. Males were 15 

more likely to survive from 2-18y. However, male annual survival probability declined quickly 16 

around 13-18y; males continued to disperse until their deaths while females generally stopped 17 

dispersing after 11y. We suggest that sex differences in the timing of dispersal and the unique 18 

challenges of risky behavior at older ages may be sufficient to yield differences in male and 19 

female lifespan. 20 

 21 

Keywords: Sex ratio, Propithecus edwardsi, survival curve, dispersal, mortality, primate 22 
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It is common to observe skewed adult sex ratios in mammals, despite the prediction by 1 

Fisher (1930) of balanced sex ratios. Frequently, skewed adult sex ratios are the result of 2 

differential mortality between males and females (Clutton-Brock et al.1977, 1982), with females 3 

commonly living longer than males. Empirical studies of a broad array of mammalian and avian 4 

species support the general theory that male survival is lower than female survival (Clutton-5 

Brock et al. 1982; Jorgenson et al. 1997; Modafferi and Becker 1997; Christe et al. 2006; 6 

Bronikowski et al. 2011). This difference is often interpreted as a cost of sexually selected traits 7 

and the propensity for risky behavior that enhances male reproductive success (Promislow 1992; 8 

Moore and Wilson 2002; Setchell et al. 2005; Kraus et al. 2008). Variation in mortality and 9 

reproduction between the sexes has important demographic, sexual selection, and life history 10 

consequences (Gaillard et al. 1989; Magnhagen 1991; Andersson 1994). As a result, 11 

understanding sex differences in life history patterns has been a central theme in ecological and 12 

evolutionary disciplines (Bonduriansky et al. 2008). 13 

Sexual conflict between males and females, particularly as it pertains to costs of 14 

reproductive effort, has been proposed as an ultimate cause of sex-specific lifespan and mortality 15 

patterns (Arnqvist and Rowe 2005; Bonduriansky et al. 2008). Increased male mortality due to 16 

predation (Owen-Smith 1993), male-biased dispersal and movement patterns (Fedigan and Zohar 17 

1997; Kraus et al. 2008), increased metabolic requirements (Clutton-Brock et al. 1982; 1985; 18 

Bribiescas 2006), male-male competition (Clutton-Brock et al. 1982), and the possible 19 

immunosuppressive effects of testosterone (Folstad and Karter, 1992; Roberts et al. 2004) have 20 

all been suggested as proximate causes for the sex differences in survival and lifespan 21 

(Bonduriansky et al. 2008; Bronikowski et al. 2011). However, without examining when 22 

mortality occurs, understanding the factors determining sex-specific differences is limited. For 23 
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example, faster growth rates of males (compared to females) can lead to nutritional stress that 1 

may make them more vulnerable during juvenility (Clutton-Brock et al. 1985; Fedigan and Zohar 2 

1997), resulting in higher juvenile mortality. The ‘fragile male’ hypothesis addresses the 3 

differential developmental trajectories of males and females and predicts higher rates of male 4 

mortality during the juvenile period of development, particularly if there are periods of resource 5 

scarcity (van Schaik and de Visser 1990; Janson and van Schaik 1993).  6 

An alternative hypothesis, ‘high risk, high gain’, predicts higher male mortality rates 7 

during adolescence and adulthood due to risky behavior (e.g., male-male competition or 8 

dispersal; Trivers 1985; Rajpurohit and Sommer 1991). Empirical support for this hypothesis has 9 

been documented across primate species (yellow baboons, Papio cynocephalus: Alberts and 10 

Altmann 1995; vervet monkeys, Chlorocebus aethiops: Fairbanks et al. 2004; gray mouse 11 

lemurs, Microcebus murinus: Kraus et al. 2008). Alternatively, higher average male mortality 12 

may not be age-related, but rather due to increased risk of mortality during the breeding season 13 

(Hoogland 2006; Kraus et al. 2008) or when environmental conditions are unfavorable (Coulson 14 

et al. 2001; Bonenfant et al. 2002; Toïgo and Gaillard 2003). When the environment is 15 

predictably unpredictable, sex differences in reproductive costs may cause females to forego 16 

reproduction in suboptimal years and thus follow a ‘bet hedging’ strategy (Stearns, 1976, 1992; 17 

Wright 1995; Gaillard and Yoccoz 2003).  This strategy leads to the ‘live slow, die old’ 18 

hypothesis (Bonduriansky et al. 2008), where disparities between male and female growth, 19 

maturation, and life span may be due to females slowing down growth and development to 20 

compensate for inter-annual climatic unpredictability. This results in ‘early bloomer’ males  21 

(Richard et al. 2002) and longer female lifespans (Charnov and Berrigan 1993). This hypothesis 22 

would suggest that mortality at all ages is expected to be higher in males than females.  23 
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In this paper, we investigate the life history strategies of male and female Milne-1 

Edwards’ sifaka (Propithecus edwardsi).  Understanding P. edwardsi life history and specifically 2 

evaluating sex differences in lifespan can greatly add to evolutionary theory of sex-biased traits, 3 

as this species lacks many characteristics commonly proposed to influence differences in male 4 

and female lifespans in other species. For example, differential growth rates (Clutton-Brock et al. 5 

1985; Fedigan and Zohar 1997) and sexual dimorphism (Promislow 1992) are predicted to drive 6 

mortality differences among male and female juveniles, and adult lifespan. However, these traits 7 

are not observed in P. edwardsi (King et al. 2011). Therefore, P. edwardsi females do not likely 8 

follow the ‘live slow, die old’ strategy, despite living in an area of annual climatic and resource 9 

variability (King et al. 2011) and having high female infant and juvenile mortality (Pochron et al. 10 

2004). Sex differences in predation rates in many species may also explain differences in male 11 

and female survival at various life stages (Christe et al. 2006), but there is no evidence for sex-12 

biased predation on P. edwardsi (Irwin et al. 2009). Although male-biased dispersal is known to 13 

result in higher male mortality (e.g., yellow baboons: Alberts and Altmann 1995), both male and 14 

female P. edwardsi disperse, with no significant differences in the frequency or distance of 15 

dispersal detected (Morelli et al. 2009). Finally, male-biased aggression and competition for 16 

mating opportunities may explain differences in lifespan (Clutton-Brock and Isvaran 2007); 17 

however P. edwardsi are polygynous, and both males and females are aggressive and often 18 

violent towards both sexes (Wright 1995, 1999; P. Wright unpublished data). Furthermore, total 19 

testosterone levels do not differ between the sexes (Tecot et al., in prep.). 20 

We examine age-based sex ratios and mortality to determine if there are sex-biased 21 

survival rates and lifespans with P. edwardsi. Using 15 years of demographic data collected from 22 

the same population as in this study, Pochron et al. (2004) explored patterns of female mortality 23 
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and fertility, and their implications for group sex ratios. We build upon this work by analyzing an 1 

additional nine years of data, investigating both males and females, and studying population-2 

wide sex ratios. The ‘fragile male’ and ‘high risk, high gain’ hypotheses both predict sex-based 3 

differences in mortality at different life stages, resulting in differences in sex ratios and male and 4 

female lifespans. Given the lack of traits typically associated with divergent male and female 5 

mortality rates and sex-biased longevity in primates and other mammals, we expected that males 6 

and females would have similar sex ratios and lifespans. Specifically, we predicted that 1) due to 7 

similarities in growth rates and body sizes, male and female juvenile mortality rates would be 8 

comparable, and 2) because both sexes disperse and there is intense intersexual competition and 9 

aggression, adolescent and adult mortality would be similar, resulting in similar lifespans. Given 10 

the similarities in dispersal frequency and distance reported for this species (Morelli et al. 2009), 11 

we also predicted that there would be no difference in the timing of dispersal that would lead to 12 

divergent mortality rates.  Lastly, we compare our findings with sex differences in survival and 13 

group transfer or dispersal in other species, and discuss causal factors likely driving observed 14 

patterns. 15 

 16 

Methods 17 

Study Site 18 

Data were derived from a long-term and ongoing study (1986-present) of Propithecus edwardsi 19 

in Ranomafana National Park (RNP) in southeastern Madagascar (21º16S latitude and 47º20E 20 

longitude; Wright 1992). RNP consists of approximately 43,500 hectares of sub-montane 21 

rainforest, which ranges from 559-1396 m in elevation, has an average temperature of 21ºC, and 22 

receives an average of 3090 mm of rain per year (Tecot 2008; Wright et al. 2008). The climate at 23 
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RNP varies seasonally with higher rainfall and temperature during the months of December-1 

March than during the remainder of the year (Overdorff 1993; Hemingway 1996; Wright 2006). 2 

Within this seasonal pattern there is considerable inter-annual variation with the monthly 3 

distributions of rain and fruit being unpredictable from year to year (King et al. 2011). 4 

Individuals in our study were members of four social groups in the area of RNP known as 5 

Talatakely. The Talatakely study site is at an altitude of 900-1100 m and is accessible to 6 

researchers through a system of trails. 7 

 8 

Study Subjects 9 

 Propithecus edwardsi are sexually monomorphic with both males and females having an 10 

adult body mass averaging 5.7 kg (King et al. 2011). Social groups range in size from 2-9 11 

individuals and typically include one or two breeding females (Pochron and Wright 2003a; 12 

Morelli et al. 2009). Reproduction is highly seasonal and most births occurred from May to July 13 

(with the exception of 1 in 54 births, which occurred in September; P. Wright unpublished data). 14 

Dispersal by both sexes peaks during September and individuals may disperse several times in 15 

their lifetime (Morelli et al. 2009). Pochron et al. (2004) describe the history of research and 16 

habituation of the study groups, and aspects of demography have been published previously 17 

(Wright 1995; Pochron and Wright 2003a; Pochron et al. 2004). Male and female growth rates 18 

and durations do not differ (King et al. 2011), and age categories for both sexes were defined as 19 

follows: infants <1 year; juveniles 1-3.5 years; adults >3.5 years (Morelli et al. 2009).   20 

Data used in this study represent 80 group-years of observations (24 years each for Group 21 

I and Group II; 19 years for Group III; 13 years for Group IV). Study animals (n=41 females, 34 22 

males) were habituated to the presence of humans; each group was followed for a minimum of 23 
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five days per month, during which time focal follows continued from dawn to dusk. All births, 1 

deaths, immigrations, and emigrations were recorded ad libitum and are accurate to within an 2 

average of one week (see Pochron et al. 2004 for details). Individuals were identifiable by collar-3 

tag combinations (see Wright 1995 for capture and marking procedures used with this 4 

population). 5 

The date of birth for most individuals born since the start of this study is known within 6 

two weeks (n=30 females, 22 males), and the ages of some individuals that entered the study 7 

groups from unmonitored groups as well as some of those who were born before 1986 were 8 

estimated on the basis of tooth wear documented during captures (n= 8 females, 8 males; King et 9 

al. 2005; Wright et al. 2008). The ages of the remaining individuals (dates of birth not observed 10 

and dental molds not taken) were estimated (n=3 females,46 males) by PCW, facilitated by 11 

seasonal breeding and obvious differences in body mass in 1-, 2-, 3-, and 4-year olds.  The ages 12 

of two older individuals (female,7 years; male 6 years) were estimated during captures on the 13 

basis of body mass, tooth tartar and tooth sharpness.  14 

All work was approved by the Stony Brook University Institutional Animal Care and Use 15 

Committee. All procedures conformed to the American Society of Primatologists’ Principles for 16 

the Ethical Treatment of Non Human Primates and to the laws of the Republic of Madagascar. 17 

 18 

Data and Analyses 19 

We analyzed sex ratios by calculating the proportion of females to the population as a 20 

whole over the entire course of the study (1986-2009) for each age, and annually. Using survival 21 

analyses, we examined the pattern of age-specific exits from social groups and evaluated the 22 

effect of sex on the cumulative probability of exiting. Survival analyses are a flexible framework 23 
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useful for determining the time it takes for an event to occur; our events were exits from a social 1 

group, which were defined as: 1) confirmed death or 2) confirmed dispersal (within or out of the 2 

study population). Dispersals are defined generally as any transition from a group and not 3 

restricted to dispersal from an animal’s natal group. Despite best efforts, 10 events could not be 4 

reliably classified as either dispersal out of the study area or a death, but were definitely an exit 5 

from the study area. Instead of removing the observations or censoring the individuals, which 6 

would introduce bias, as their exclusion would not be random but conditioned on the events in 7 

which we are interested (White and Garrott 1990), we provide two analyses of dispersals and 8 

survival: 1) assuming unknowns are all deaths, and 2) assuming unknowns are all dispersals. 9 

Either assumption is extreme, such that we expect the true cumulative distribution to lie in 10 

between the two. We restrict our interpretation of results as it pertains to the effect of sex only if 11 

both analyses agree. 12 

Survival data included 26 observations of males and 38 observations of females in the 13 

study area. Individuals that dispersed outside of the study area were not followed until death. 14 

Thus, we assumed that dispersing within, out of, and into the study area are stochastic processes 15 

rather than Markovian, such that observed dispersals are a random variable, sampled from a 16 

greater population. We observed males disperse 19 times and females disperse 15 times, in total 17 

for each. 18 

We used the Cox proportional hazards regression model (Cox 1972) implemented in the 19 

R package eha (Göran 2012) to estimate cumulative distributions of exits. We were interested in 20 

comparing two nested models, null (no covariates) and sex (included sex effect on survival 21 

cumulative distribution), for estimating 1) the time until a group dispersal, and 2) time until 22 

death.  We considered t, the time until an event, as a random variable where our model of event i 23 
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was defined (specifically for the model including the sex covariate) as hi(t| Sex) = h0(t)*∗. 1 

The cox model allows the baseline hazard function (h0) to be unspecified while a linear model is 2 

used to incorporate covariate effects on the survival distribution; as such, the model is semi-3 

parametric. Depending on the individual, observations may span an individual’s entire life, are 4 

left truncated when individuals transfer into the study population, or right censored when animals 5 

transfer out of the study population. Parameter estimation was done using maximum-likelihood 6 

as it is more robust to tied-data (Broström 2002), and model parsimony was evaluated using 7 

Akaike’s Information criterion with a second-order bias correction for small sample size (AICc; 8 

Burnham and Anderson 2002). We compared models to evaluate the effect of sex on both 9 

dispersals and survival by calculating model probabilities, Pr(model j| data), known as ‘Akaike 10 

weight’ (Burnham et al. 2011). The proportional hazards assumption of our model was tested for 11 

each analysis using weighted residuals (Grambsch and Therneau 1994) and implemented in the 12 

R package survival (Therneau 2012); we used α = 0.05 to determine statistical significance. 13 

 14 

RESULTS 15 

Sex Ratios 16 

Age-specific population sex ratios were female-biased at birth until 2-2.9 years, at which 17 

point they became equal (Appendix S1, Figure 1a). After 2.9 years of age, sex ratios became 18 

male-biased and remained so until age 17. At age 17-17.9, the number of females was again 19 

equal to or greater than the number of males. Therefore, for the majority of age categories, the 20 

sex ratio of this population was male-biased, but with more young and old females than males. 21 

The mean sex ratio of this population was in flux from year to year and not consistently male- or 22 

female-biased (Appendix S2, Figure 1b). 23 

Page 10 of 40Behavioral Ecology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

11 

Survival 1 

Neither survival analysis rejected the proportional hazards assumption (P > 0.05; Table 2 

1). When unknowns were assumed to be dead, AICc values for our two models were 319.10 3 

(null) and 317.66 (sex). Akaike weight was 0.67 (sex) and 0.32 (null), such that the model with 4 

the effect of sex was 2.06 times the more parsimonious model, given our data. Under the sex 5 

model, the median predicted lifespan of males and females were 1.1 (0.50 – 3.25, 95% CI) and 6 

2.8 (0.50 – 12.2, 95% CI), respectively. When assuming the unknowns were all dispersals, AICc 7 

values were 297.39 (null) and 294.53 (sex). Akaike weight was 0.81 (sex) and 0.19 (null); thus 8 

the model with the effect of sex was 4.16 times the more parsimonious model, given our data. 9 

Under the sex model, the median predicted lifespans of males and females were 2.17 (1.10 – 10 

4.21, 95% CI) and 3.1 (1.85 – 4.67, 95% CI), respectively. 11 

Overall, regardless of the assumption with the unknowns, there is moderate support for a 12 

difference in cumulative probabilities of age-specific survival for males and females; the effect 13 

of sex was in the same direction (Table 1). Both sexes experience high mortality during the first 14 

two years of life (Figure 2). After about two years, male and female cumulative survival 15 

probabilities diverge, irrespective of the assumption regarding the unknowns; generally more 16 

males are likely to survive during the ages of 2 to 18. However, between the ages of 9 and 18, 17 

male survival probability declines quickly whereas the decline for females is more gradual.  18 

After age 18, the probability of female but not male mortality approaches zero. The oldest male 19 

observed in this study was 19 years old; there is no evidence within our study area of males 20 

living beyond this age. In contrast, females that reach 19 years of age are likely to live into their 21 

early 30s. 22 

 23 
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Dispersals 1 

We found the proportional hazards assumption was not rejected for either dispersal 2 

analyses (P > 0.05). When assuming the unknowns had all died, the AICc values of the dispersal 3 

analyses were 371.52 (null) and 368.68 (sex). Akaike weight was 0.81 (sex) and 0.19 (null), such 4 

that the model with the effect of sex was 4.15 times the more parsimonious model, given the 5 

data. Given the sex model, the median predicted ages of dispersal of males and females were 6 

7.12 (5.01 – 8.00, 95% CI) and 4.58 (4.25 – 6.00, 95% CI), respectively. When assuming the 7 

unknowns had all dispersed, AICc values were 531.47 (null) and 528.82  (sex). Akaike weight 8 

was 0.79 (sex) and 0.21 (null); thus the model with the effect of sex was 3.77 times the more 9 

parsimonious model, given the data. Given the sex model, the median predicted ages at dispersal 10 

of males and females were 7.81 (6.62 – 8.91, 95% CI) and 4.81 (4.62 – 7.11, 95% CI), 11 

respectively. 12 

There was moderate support for a difference in cumulative probabilities of age-specific 13 

dispersal in both males and females, regardless of the assumptions made for unknowns, and the 14 

effect of sex was in the same direction (Table 1). Neither males nor females disperse before they 15 

are 3-4 years of age (Figure 3). Males have a consistently higher probability of dispersing, 16 

especially between the ages of 6-10. The highest probability of female dispersal occurs between 17 

the ages of 4-6 and then declines quickly; by age 10 females have less than a 0.1 probability of 18 

dispersing.  Due to a single unknown female exit from the population at 27 years of age, it is 19 

unclear whether females stop dispersing at the age of 21 (last confirmed dispersal) or continue to 20 

have a small probability of dispersing until they die.  21 

 22 

Discussion 23 
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Sexual selection theory predicts that intense competition in males for reproductive 1 

opportunities results in higher mortality rates in males over the course of their lifetime (Trivers 2 

1972). Across polygynous species of mammals, including primates, there is consistent support 3 

for accelerated mortality in males (Clutton-Brock and Isvaran 2007; Bronikowski et al. 2011). 4 

As we predicted, and contrary to the ‘fragile male’ and ‘live slow, die old’ hypotheses, males and 5 

females experienced similar probabilities of infant survival. After age two (during juvenility), 6 

males, not females, were more likely to survive until approximately 18. Because growth rates 7 

and durations also do not differ in this species (Morelli et al. 2009; King et al. 2011), we can 8 

reject differential development and maturation as significant factors influencing longevity in this 9 

species. Males appear to live ‘faster’ lives simply by virtue of dying younger. This pattern differs 10 

from the ‘early blooming’ observed in male P. verreauxi (Richard et al. 2002).  11 

Although we expected that male and female survivorship would be approximately equal 12 

during adulthood, males had higher survival than females during adulthood. Though both sexes 13 

are aggressive, and testosterone levels do not differ among males and females (or are seasonally 14 

higher in males) (Tecot et al., in prep.), higher female mortality may be related to female 15 

dominance in this species (Pochron and Wright 2003b). However, as predicted by the ‘risky 16 

male’ hypothesis, at around 13-18 years of age male annual survival probability declined 17 

quickly. After the age of 18, male mortality exceeded that of females, potentially as a 18 

consequence of continuous dispersal by males at older ages. Our data reveal that variability in 19 

the timing and causes of sex-specific mortality lead to complex patterns of sexual asymmetries in 20 

survivorship at different life stages. 21 

Sex-Ratios 22 
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Our data show that birth sex ratios were skewed towards females, in contrast with several 1 

other primate species where birth sex ratios are typically nearly equal (see Fedigan and Zohar 2 

1997), or male-biased, as in the closely related Verreaux’s sifaka (Propithecus verreauxi) 3 

(Richard et al. 1991, 2002). Although infant mortality was high in both sexes, as is typical for 4 

lemurs (Wright 1999; Richard et al. 2002), sex ratios became male-biased prior to natal 5 

dispersal, indicating that juvenile mortality was greater for females than males. Given the greater 6 

probability of female mortality during the juvenile period of development, our data are 7 

inconsistent with the ‘fragile male hypothesis’ supported for other species (Clutton-Brock et al. 8 

1982; van Schaik and de Visser 1990; Owen-Smith 1993; Fedigan and Zohar 1997; Loison et al. 9 

1999; Alberts and Altmann 2003; Setchell et al. 2005; see van Schaik and de Visser 1990 for 10 

review). Though birth sex ratios differ in P. edwardsi and P. verreauxi, patterns of sex-based 11 

infant and early juvenile mortality suggest that males in neither species are fragile. On the 12 

contrary, females appear to be the fragile sex during infancy. If females have a greater mortality 13 

rate from infancy through development and maturation, why is it that we ultimately see greater 14 

female longevity?  15 

Patterns of Dispersal 16 

Because previous research on this species reported that male and female average 17 

dispersal frequency or distance did not differ (Morelli et al. 2009), we predicted similar patterns 18 

in the rate and timing of dispersal. Instead, our data reveal that there were differences in the 19 

timing and rates of dispersal between males and females. Specifically, males continued to 20 

disperse until their deaths, while females generally stopped dispersing after approximately 11 21 

years of age. Only one female dispersed after 11, at age 21 (with one additional unknown 22 

disappearance at age 27). The cause of this dispersal remains unknown. The continued dispersal 23 
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by males throughout their lifetime and subsequent mortality is consistent with the ‘high risk, 1 

high gain’ hypothesis, predicting higher mortality rates in males during adolescence and 2 

adulthood due to risky behavior (Trivers 1985; Rajpurohit and Sommer 1991; Fedigan and Zohar 3 

1997). Because mortality risk can be greater in dispersers relative to their philopatric 4 

conspecifics (e.g., Isbell et al. 1993; Alberts and Altmann 1995), males continue to incur this risk 5 

later in life compared with females. We suggest that dispersal between groups affects male 6 

longevity by removing individuals from the population not just as emigrants, but by reducing the 7 

survival of individuals due to the risks incurred during dispersal. 8 

Research on blackbirds (Greenwood and Harvey 1976) indicates that large differences in 9 

lifespan can exist between dispersing and non-dispersing individuals. The sources of risk for 10 

emigrants may include increased predation risk (Isbell et al. 1990; Hass and Valenzuela 2002), 11 

decreased knowledge of resources (Waser and Jones 1983), and social costs associated with the 12 

loss of familiar group-mates (Isbell and van Vuren 1996). Our study suggests that dispersal 13 

carries great risk for individuals. Propithecus edwardsi groups tend to remain in discrete home 14 

ranges, and emigration consists of movement out of a familiar area, typically by a single 15 

individual (Wright 1995; P. Wright unpublished data). Male survival curves incorporating both 16 

types of exits (mortality and dispersal; data not shown), were age independent, with cumulative 17 

exits occurring at a near constant rate throughout life, reflecting the dispersal patterns observed. 18 

In contrast, female survival curves were age-dependent, showing a declining rate of exiting the 19 

population (via mortality and dispersal) with age, a result that is also consistent with observed 20 

dispersal behavior.  While correlative, these results suggest that dispersal is met with higher 21 

mortality, and the longer female lifespan in this species may be due to a lack of females 22 

transferring groups at older ages.  23 
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Why, in this species, do males continue to disperse later in life? Although lacking the 1 

sexually dimorphic characteristics of many polygynous species, Propithecus edwardsi are 2 

polygynous, and intrasexual competition may explain differences in male and female dispersal 3 

behavior. Often, in a polygynous mating system there is rank-related reproductive success, 4 

resulting in significant reproductive skew (e.g., Setchell et al. 2005). Furthermore, the 5 

cumulative detrimental effects of intense intrasexual competition also limit male breeding 6 

success. Thus, males are under weaker selection to live long lives relative to females (Clutton-7 

Brock and Isvaran 2007; Bronikowski et al. 2011). In P. edwardsi, competition among males is 8 

particularly violent during the dispersal and mating seasons (P. Wright, unpublished data). 9 

Similar to male ringtailed lemurs (Lemur catta), who also disperse outside of the mating season 10 

(Parga and Lessnau 2008), secondary dispersal by both male and female P. edwardsi has a 11 

reproductive function (Morelli et al. 2009). During the four months of the dispersal season, the 12 

frequency of scent-marking increases (Pochron et al. 2005ab), androgens are at their peak (Tecot 13 

et al. 2010; S. Tecot in prep.), and testes begin to increase in size, reaching their maximum 14 

during the mating season (Pochron and Wright 2002; Pochron et al. 2002; Morelli 2008).  15 

Male-directed aggression by both males and females during the mating and dispersal 16 

seasons can be severe, leading to deep lacerations, castration, and even death (Wright 1995, 17 

1999; P. Wright unpublished data), similar to that observed during the mating season of other 18 

species (e.g., Propithecus verreauxi: Jolly 1966; Lawler et al. 2005). These intense fights 19 

typically occur between residents and immigrants (Morelli 2008), as groups seldom contain more 20 

than one adult male for extended periods of time (Morelli et al. 2009). It is important to note that 21 

both males and females disperse, reproductive competition occurs among females as well as 22 

males (Morelli et al. 2009), and both sexes benefit reproductively by dispersal behavior. For 23 
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instance, infanticidal events during hostile group takeovers by a dispersing individual result in 1 

increased reproductive opportunities for the invader, whether male or female (Morelli et al. 2 

2009).  3 

Despite the information we have on aggressive behavior in this species, several things 4 

remain unclear. For instance, we do not know whether males or females incur more wounds or 5 

differentially participate in such heightened aggressive bouts. In addition, we do not know 6 

whether old individuals are more likely than young individuals to be seriously injured in such 7 

bouts. Such detailed data would help determine whether death as a result of dispersal-related 8 

aggression might explain the sex-biased mortality patterns observed. Fedigan and Zohar (1997) 9 

determined that mortality in male Japanese macaques (Macaca fuscata) was higher in the 10 

birth/emigration season than the mating season. Because emigration in P. edwardsi is also 11 

largely seasonal, a seasonal analysis can help test the hypothesis that dispersal is directly related 12 

to higher rates of male mortality. It is also likely that dispersal may impose unique challenges for 13 

aged sifaka. The chances of engaging in intense intrasexual competition and incurring costs 14 

associated with such competition may cause ‘cumulative phenotypic damage’ in males (Clutton-15 

Brock and Isvaran 2007), suggesting that immigration is physiologically riskier the more it 16 

occurs. Experimental research on the soil mite (Sancassania berlesei) model system found 17 

greater per capita mortality in old adults versus younger adults during dispersal (Bowler and 18 

Benton 2009), suggesting that dispersing at older ages carries greater costs. As individuals age, 19 

the ability to perform certain activities may deteriorate (e.g., reduced sensory acuity or 20 

locomotion), increasing the difficulty of detecting or escaping predators, locating resources, or 21 

assimilating into new groups. There is preliminary evidence to suggest that locomotion in 22 

Propithecus edwardsi may be compromised as individuals age: old females spend more time 23 
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feeding and less time traveling than young females, particularly when traveling on steep terrain 1 

(E. Achilles et al. in prep), and trabecular bone volume in the femoral head may decrease in aged 2 

females (A. Chan et al. unpublished data). If males undergo similar age-related declines as 3 

females, the costs of dispersal may be exacerbated in older males as they continue to disperse. If 4 

males, like females, incur these additional costs, why continue dispersing? The answer may lie in 5 

sex ratios. Sex ratios and the availability of mates within a group are known to influence whether 6 

an individual disperses (Morelli et al. 2009). Aggression is typically directed toward the most 7 

numerous sex in the group, thus skewing the sex of individuals driven out of the group (Wright 8 

1995; P. Wright unpublished data). Because males outnumber females from ages 2.9 to 17, males 9 

may be driven out of the group more frequently than females throughout their lives. 10 

 11 

Kin, Dispersal, and Mortality 12 

This study has broader implications for understanding social dynamics. In general it is 13 

predicted that relatives show kin bias, participating in more affiliative and cooperative behavior 14 

with one another (Hamilton 1963), resulting in direct fitness benefits (Alouatta seniculus: Pope, 15 

1990, 2000; Macaca fuscata: Pavelka et al. 2002; Cercopithecus aethiops sabaeus: Fairbanks 16 

1988). When there is a lack of sex-biased dispersal, there tends to be a bias in dispersal distance 17 

such that one sex is more likely to encounter relatives in their non-natal groups than the other 18 

(Waser et al. 1994; reviewed in Kappeler 2008). For instance, in the solitary Coquerel’s dwarf 19 

lemur (Mirza coquereli) females have shorter dispersal distances than males, resulting in a 20 

dispersed matrilineal population structure (Kappeler et al. 2002), creating the opportunity for 21 

sex-specific kin bias. Despite an overall lack of dispersal bias in this species (Morelli et al. 22 

2009), same-sex pairs living together were biased, with female pairs living together longer than 23 
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male pairs (Morelli et al. 2009; P. Wright unpublished data). While the sample sizes are small, 1 

sex differences in group tenure are notable: female adult relatives lived together 5-10 years, 2 

while male adults (relatives and non-relatives) lived together 1-2 years on average (and one of 3 

these males was typically born into the group; P. Wright unpublished data). The slower rate of 4 

female dispersal after 5-8 years of age that we report in this study can explain why females are 5 

more likely to live with other females for longer periods of time, and suggests that opportunities 6 

for long-term relationships are greater for females than males (though it should be noted that low 7 

fertility and high infant and juvenile mortality reduce opportunities for large kin groups in the 8 

species as a whole [Pochron et al. 2004]). As a consequence, males may experience social stress 9 

more often than females. In both nonhuman primates and humans, individuals well integrated into 10 

strong social relationships have a greater likelihood of surviving than those in weak social 11 

relationships (Holt-Lunstad et al. 2010; Silk et al. 2010), demonstrating the potential influence of 12 

such relationships on mortality and lifespan. 13 

 14 

Conclusions 15 

In our population, early female-biased sex ratios and high mortality resulted in male-16 

biased sex ratios from sexual maturity through 18 years of age, a pattern also observed in other 17 

lemur species (Kappeler 2000; Ostner and Kappeler 2004), including the closely related 18 

Propithecus verreauxi. Although male and female mortality rates were more similar to each 19 

other by age 5 years, our data reveal that females dispersed earlier than males. Coupled with 20 

higher female infant mortality, this resulted in an initially higher rate of females leaving the 21 

population, either through dispersal or death. Exit rates between males and females then 22 

converged at age 10, with males and females being equally likely to exit the population, either 23 

through death or dispersal until age 14. After 14 years of age, males continued to disperse from 24 
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the population steadily, whereas females remained until their deaths. This continued dispersal by 1 

males is the primary explanation for female-biased sex ratios at older ages and, ultimately, longer 2 

female lifespans.  3 

The results of this study begin to address the importance of how different life history 4 

strategies can influence longevity. We found support for the ‘Risky Male’ hypothesis, wherein 5 

risky behavior occurs at older ages in males than in females, resulting in shorter male lifespans. 6 

Our results also highlight critical shifts in mortality and dispersal rates that produced the specific 7 

sex-ratio patterns observed at any given point in time and may further elucidate the causes for 8 

female-biased lifespan in other monomorphic lemuroidea (Propithecus verreauxi: Richard et al. 9 

2002; Lemur catta: Gould et al. 2003; Microcebus murinus: Kraus et al. 2008). Further studies 10 

are needed to investigate cause of death and help determine why females have higher early 11 

mortality, why males continue to disperse later in life, and what factor(s) are interacting to 12 

contribute to the patterns observed in this population.  13 
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Figure 1. Proportion of female Propithecus edwardsi in Ranomafana National Park, Madagascar 1 

from 1986-2009 by (a) age, and (b) year. The horizontal line represents an equal sex ratio. 2 

 3 

Figure 2. Cumulative probability of survival for male and female Milne-Edwards’ sifaka 4 

(Propithecus edwardsi) in Ranomafana National Park, Madagascar between 1986-2009. 5 

 6 

Figure 3. Cumulative probability of dispersal for male and female Milne-Edwards’ sifaka 7 

(Propithecus edwardsi) in Ranomafana National Park, Madagascar between 1986-2009. 8 
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Table 1. Proportional hazards regression estimates, statistical tests of significance, and test of 1 

model assumptions of Propithecus edwardsi survival and dispersal  2 

Analysis Type Analysis sex SE(sex) χ2 df P 

Assumption Test       

 1 NA NA 0.06 1 0.812 

 2 NA NA 1.55 1 0.213 

 3 NA NA 2.65 1 0.103 

 4 NA NA 1.77 1 0.183 

Survival       

 1 -0.374 0.21 3.8 1 0.05 

 2 -0.547 0.26 4.4 1 0.035 

Dispersal       

 3 -0.483 0.225 4.6 1 0.032 

 4 -0.418 0.211 3.9 1 0.048 

NA indicates the cell is “not applicable” to the row-column combination. Analyses 1 and 3 3 

assume unknown exits died, and 2 and 4 assume unknown exits transferred 4 
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Figure 1. Proportion of female Propithecus edwardsi in Ranomafana National Park, Madagascar from 1986-
2009 by (a) age, and (b) year. The horizontal line represents an equal sex ratio.  
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Figure 2. Cumulative probability of survival for male and female Milne-Edwards’ sifaka (Propithecus 
edwardsi) in Ranomafana National Park, Madagascar between 1986-2009.  
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Figure 3. Cumulative probability of dispersal for male and female Milne-Edwards’ sifaka (Propithecus 
edwardsi) in Ranomafana National Park, Madagascar between 1986-2009.  
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Females of many mammal species live longer than males. We show that Milne-Edwards’ sifaka, a 
lemur species lacking traits traditionally associated with longer female lifespan, also live longer 
than males. Longer female lifespan is not associated with sex differences in growth, body mass, 
competition, or rate and distance of dispersal. We suggest that the cumulative effects of risky 
behavior (dispersal) at older ages by males, and not females, cause males to live significantly 
shorter lives.  
 

Page 40 of 40Behavioral Ecology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


